
Interactive Engineering Calculation

Sheets with Org-Mode and Python

P. Vennemann

February 8, 2025

Introduction

With GNU Emacs Org-mode and the Python library SymPy it is possible to create
calculation sheets, as if you were using pencil and paper. That means, you write formulas
and de�ne parameters on a sheet, and let python do the actual calculation. If you change
the value of a parameter, the sheet is updated. This it pretty close to an interactive
notebook like it is used by programs like MathCAD, but much more �exible1.
Before we start, we have to enable the execution of python code in Emacs: Therefore,

execute M-x load-library RET ob-python once2.

Example: Circumference and Area of a Circle

To give a minimal example, a simple pencil and paper like calculation could look like
this:

Given:

dcirc = 1.250 ·m

Formulas:

C = π · dcirc

A =
π · d2circ

4

1Because you could also use another language like Octave or Ruby and you could export to other

formats than pdf, for example html or odt.
2As in Emacsc documentation, M stands for the meta-key, usually Alt, C for the control-key, and RET is

Return.

1

https://orgmode.org/
https://www.sympy.org/en/index.html
https://en.wikipedia.org/wiki/Mathcad

Results:

C = 3.927 ·m

A = 1.227 ·m2

Corresponding Org-mode Code

The code in the org-mode document, that generated the above calculation, looks like
this:

Given

#+BEGIN_SRC python :session :results output latex :exports results

from sympy import pi

from sympy.physics.units import meter

d = symbols('d_{circ}')

given = { d : 1.25 * meter, }

prt(given)

#+END_SRC

Formulas:

#+BEGIN_SRC python :session :results output latex :exports results

C, A = symbols('C A')

expr = {}

expr[C] = d * pi

expr[A] = d**2 * pi / 4

prt(expr)

#+END_SRC

Results:

#+BEGIN_SRC python :session :results output latex :exports results

res = {}

res[C] = expr[C].subs(given).evalf()

res[A] = expr[A].subs(given).evalf()

prt(res)

#+END_SRC

Explanation

Step 1: De�ne and print expressions

I prefere using dictionaries to store my formulas and parameters, although there are
di�erent ways to do this. In the example, the diameter is stored in a dictionary with the

2

name given. Note, that the parameter d must be of the type Symbol. Additionally, we
import the constant pi and use physical units.

#+BEGIN_SRC python :session :results output latex :exports results

from sympy import pi

from sympy.physics.units import meter

d = symbols('d_{circ}')

given = { d : 1.25 * meter, }

prt(given)

#+END_SRC

The header of the original org-mode document contains a function prt, that uses the
sympy.latex function for conveniently converting my dictionary to LATEX Code. You
could also use the latex function directly, but in this way, it looks a bit nicer and is
more convenient. Just for completeness, this is the function de�nition:

#+BEGIN_SRC python :session :exports none

from sympy import symbols, Symbol, latex, Float, sympify

print a dictionary that contains expressions,

floats are sympified and then formatted as defined by frmt

def prt(expr_dict, frmt='{:.4G}'):

for symbol in expr_dict:

expr = fmt(sympify(expr_dict[symbol]), frmt)

print('$$'+ \

symbol.name + ' = ' + \

latex(expr,

mul_symbol ='dot',

imaginary_unit='rj') + \

'$$\n'

)

apply format string to floats

fmt = lambda expr, frmt: expr.xreplace(

{n: Symbol(frmt.format(n)) for n in expr.atoms(Float)}

)

convert kelvin temperature to a printable celsius expression

toDegC = lambda elem: (elem.atoms(Float).pop() - 273.15) * symbols(r'\text{degC}')

#+END_SRC

Back to the example. Press C-c C-c to execute the code. The following RESULTS block
will be generated automatically:

#+RESULTS:

#+begin_export latex

$$d_{circ} = 1.250 \cdot \text{m}$$

#+end_export

3

In the �nal document, the only visible output will be:

dcirc = 1.250 ·m
In the same way, formulas for circumference C and AreaAmay be stored in a dictionary

named expr:

#+BEGIN_SRC python :session :results output latex :exports results

C, A = symbols('C A')

expr = {}

expr[C] = d * pi

expr[A] = d**2 * pi / 4

prt(expr)

#+END_SRC

The ouput is:

C = π · dcirc

A =
π · d2circ

4

Step 2 Manipulate and evaluate expressions and print the results

Use standard Sympy functions for manipulating your expressions. For example, to eval-
uate the above de�ned formulas with the given parameter dcirc, I used the following
code:

#+BEGIN_SRC python :session :results output latex :exports results

res = {}

res[C] = expr[C].subs(given).evalf()

res[A] = expr[A].subs(given).evalf()

prt(res)

#+END_SRC

This is the output:

C = 3.927 ·m

A = 1.227 ·m2

Code execution

For security reasons, org asks to con�rm the execution of each code block. For trusted
sources, this behavior can be changed by setting org-confirm-babel-evaluate to nil.
Pressing C-c C-e l p will execute all code blocks and export the pen and paper like
calculation to a PDF-�le.

4

Quadratic Equation

Just to give another example. Let's de�ne a simple algebraic equation with some param-
eters, plot a graph and calculate the roots.

Code

Given

#+BEGIN_SRC python :session :results output latex :exports results

f1, a, b, c, x = symbols('f_1(x) a b c x')

quadr = {

f1 : a * x**2 + b * x + c,

a : 1.25,

b : 2.75,

c : -3.5,

}

prt(quadr)

#+END_SRC

Graph

#+begin_src python :session :results file :exports results

from sympy import plot

fname = './img01.png'

expr = quatr[f1].subs(quadr)

plot(expr).save(fname)

fname

#+end_src

Roots

#+BEGIN_SRC python :session :results output latex :exports results

from sympy import solve

x0, x1 = symbols('x_0 x_1')

roots = solve(quadr[f1].subs(quadr), x)

results = {x0: roots[0], x1:roots[1]}

prt(results)

#+END_SRC

Output

This would be, how it looks like in the �nal document:

5

Given

f1(x) = a · x2 + b · x+ c

a = 1.250

b = 2.750

c = −3.500

Graph

Roots

x0 = −3.102

x1 = 0.9025

6

Real World Example

Let's discuss a small heat transfer problem as a �rst real world example.
Imagine a temperature sensor in a closed room (see �gure below). The heat loss

through the walls is compensated by a heating, in a way, that temperatures are constant
over time. The inner surfaces of the walls have a uniform temperature Tu of 18 °C. The
reading of the temperature sensor Tt is 20 °C. The sensor is of type TMP36 with a black
plastic casing that has an emissivity ϵ of 0.95. The conductive heat transfer coe�cient
at the sensor surface α is estimated to be 3 W/(m²·K).
What is the real indoor air temperature T∞?

heating

sensor

Tt

T∞

Tu

Q̇

Q̇

Given

Let's list the available information.

Tt = 293.2 ·K

Tu = 291.2 ·K

ϵ = 0.9500

α =
5 ·W
K ·m2

cs =
5.670E − 8 ·W

K4 ·m2

We also included the Stefan-Boltzman constant cs.

7

https://duckduckgo.com/?q=tmp36
https://en.wikipedia.org/wiki/Emissivity
https://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_law

Equations

First, let's understand the problem. The coldest part of the room are the walls. The
temperature sensor will radiate heat to the walls. In steady state, the sensor will absorb
the same amount of heat from the surrounding air by means of convection. Otherwise,
the temperature reading of the sensor would not be steady. So we need two equations.
One, describing the radiation from the sensor to the walls Q̇r, and another one for the
convection of heat from the air to the sensor Q̇c.

Qr = A · ϵ · cs ·
(
T 4
t − T 4

u

)
Qc = A · α · (T∞ − Tt)

Solution

Because Q̇r and Q̇c are identical in steady state, we can eliminate them from the equa-
tions. The surface area of the thermometer will also vanish. Solving the equation to T∞
gives:

T∞ =
T 4
t · ϵ · cs + Tt · α− T 4

u · ϵ · cs
α

Answer

Replacing the symbols by numbers gives:

T∞ = 295.3 ·K

T∞ = 22.15 · degC

We could much improve the accuracy of the sensor by wrapping it in a piece of alu-
minium foil that has an emissivity ϵ of 0.03. A reading of 20 °C would now correspond
to the following ambient temperature:

T∞ = 293.2 ·K

T∞ = 20.07 · degC

Code

This is the code, that produced the above example. The explanations are omitted.

8

Given

#+BEGIN_SRC python :session :results output latex :exports results

from sympy.physics.units import kelvin, meter, watt

from scipy.constants import sigma

Tt, Ti, Tu, epsilon, alpha, cs = symbols(r'T_t T_\infty T_u \epsilon \alpha c_s')

giv = {

Tt : (20+273.15) * kelvin,

Tu : (18+273.15) * kelvin,

epsilon : 0.95,

alpha : 5 * watt / (meter**2 * kelvin),

cs : sigma * watt / (meter**2 * kelvin**4),

}

prt(giv)

#+END_SRC

Equations

#+BEGIN_SRC python :session :results output latex :exports results

Qc, A, Qr, = symbols(r'Q_c A Q_r')

eqn = {

Qr : epsilon * cs * A * (Tt**4 - Tu**4),

Qc : alpha * A * (Ti - Tt),

}

prt(eqn)

#+END_SRC

Solution

#+BEGIN_SRC python :session :results output latex :exports results

sol = {

Ti : solve((eqn[Qr] - eqn[Qc]), Ti)[0]

}

prt(sol)

#+END_SRC

Answer

#+BEGIN_SRC python :session :results output latex :exports results

ans = {

Ti : sol[Ti].subs(giv)

}

prt(ans)

prt({Ti:toDegC(ans[Ti])})

#+END_SRC

9

Alternate Answer (Aluminium foil)

#+BEGIN_SRC python :session :results output latex :exports results

giv[epsilon] = 0.03

ans = {

Ti : sol[Ti].subs(giv)

}

prt(ans)

prt({Ti:toDegC(ans[Ti])})

#+END_SRC

10

